29 research outputs found

    A compiler cost model for speculative multithreading chip-multiprocessor architectures

    Get PDF

    ARM Ltd. and

    No full text
    Speculative parallelization is a technique that allows code sections that cannot be fully analyzed by the compiler to be aggressively executed in parallel. However, while speculative parallelization can potentially deliver significant speedups, several overheads associated with this technique can limit these speedups in practice. This paper proposes a novel compiler static cost model of speculative multithreaded execution that can be used to predict the resulting performance. This model attempts to predict the expected speedups, or slowdowns, of the candidate speculative sections based on the estimation of the combined runtime effects of various overheads, and taking into account the scheduling restrictions of most speculative execution environments. The model is based on estimating the likely execution duration of threads and considers all the possible permutations of these threads. This model also produces a quantitative estimate of the speedup, which is different from prior heuristics that only qualitatively estimate the benefits of speculative multithreaded execution. In previous work, a limited version of the framework was evaluated on a number of loops from a collection of SPEC benchmarks that suffer mainly from load imbalance and thread dispatch and commit overheads. In this work, an extended framework is also evaluated on loops that may suffer from data-dependence violations. Experimental results show that prediction accurac

    An Extended Kriging Method to Interpolate Near-Surface Soil Moisture Data Measured by Wireless Sensor Networks

    No full text
    In the practice of interpolating near-surface soil moisture measured by a wireless sensor network (WSN) grid, traditional Kriging methods with auxiliary variables, such as Co-kriging and Kriging with external drift (KED), cannot achieve satisfactory results because of the heterogeneity of soil moisture and its low correlation with the auxiliary variables. This study developed an Extended Kriging method to interpolate with the aid of remote sensing images. The underlying idea is to extend the traditional Kriging by introducing spectral variables, and operating on spatial and spectral combined space. The algorithm has been applied to WSN-measured soil moisture data in HiWATER campaign to generate daily maps from 10 June to 15 July 2012. For comparison, three traditional Kriging methods are applied: Ordinary Kriging (OK), which used WSN data only, Co-kriging and KED, both of which integrated remote sensing data as covariate. Visual inspections indicate that the result from Extended Kriging shows more spatial details than that of OK, Co-kriging, and KED. The Root Mean Square Error (RMSE) of Extended Kriging was found to be the smallest among the four interpolation results. This indicates that the proposed method has advantages in combining remote sensing information and ground measurements in soil moisture interpolation

    Directed migration of human neural progenitor cells to interleukin-1β is promoted by chemokines stromal cell-derived factor-1 and monocyte chemotactic factor-1 in mouse brains

    No full text
    <p>Abstract</p> <p>Background</p> <p>Neurogenesis, including the proliferation, migration and differentiation of neural progenitor cells (NPCs), is impaired in HIV-1 associated dementia (HAD). We previously demonstrated HIV-1-infected macrophages (HIV-MDM) regulate stromal cell-derived factor 1 (SDF-1) production in astrocytes through Interleukin-1β (IL-1β). Chemokines are known to induce NPC migration; however, it remains unclear how chemokines produced in inflammation regulate NPC migration.</p> <p>Methods</p> <p>The secretion of SDF-1 and Monocyte chemotactic preotein-1 (MCP-1) in astrocytes upon IL-1β stimulation was measured by ELISA assay<it>.</it> Human NPCs were injected parallel along with IL-1β, SDF-1 or MCP-1 intracranially into basal ganglion 1 mm apart in SCID mice, and immunofluorescent staining was used to study the survival and migration of injected human NPCs.</p> <p>Results</p> <p>SDF-1 and MCP-1 are secreted by astrocytes upon IL-1β stimulation in a time-dependent manner. Injected human NPCs survived in SCID mice and migrated towards sites of IL-1β, SDF-1 and MCP-1 injection.</p> <p>Conclusions</p> <p>In conclusion, chemokines SDF-1 or MCP-1 secreted by astrocytes in the presence of IL-1β injection are attractive to NPCs injected into SCID mouse brains, suggesting that SDF-1 and MCP-1 play important roles in NPC migration during neuroinflammation.</p

    Table7_Systematic characterization of Puerariae Flos metabolites in vivo and assessment of its protective mechanisms against alcoholic liver injury in a rat model.XLS

    No full text
    Puerariae Flos, a representative homology plant of medicine and food for alcoholism, has a long history of clinical experience and remarkable curative effect in the treatment of alcoholic liver disease (ALD). However, its effective forms and hepatoprotective mechanisms remain unknown. In the present study, a strategy based on UPLC-QTOF MS combined with mass defect filtering technique was established for comprehensive mapping of the metabolic profile of PF in rat plasma, urine, bile, and feces after oral administration. Furthermore, the absorbed constituents into plasma and bile with a relatively high level were subjected to the network analysis, functional enrichment analysis, and molecular docking to clarify the potential mechanism. Finally, the therapeutic effect of PF on ALD and predicted mechanisms were further evaluated using a rat model of alcohol-induced liver injury and Western blot analysis. In total, 25 prototype components and 82 metabolites, including 93 flavonoids, 13 saponins, and one phenolic acid, were identified or tentatively characterized in vivo. In addition, glucuronidation, sulfation, methylation, hydroxylation, and reduction were observed as the major metabolic pathways of PF. The constructed compound–target–pathway network revealed that 11 absorbed constituents associated with the 16 relevant targets could be responsible for the protective activity of PF against ALD by regulating nine pathways attributable to glycolysis/gluconeogenesis, amino acid metabolism, and lipid regulation as well as inflammation and immune regulation. In addition, four active ingredients (6″-O-xylosyltectoridin, genistein-7-glucuronide-4′-sulfate, tectoridin-4′-sulfate, and 6″-O-xylosyltectoridin-4′-sulfate) as well as two target genes (MAO-A and PPAR-α) were screened and validated to play a crucial role with a good molecular docking score. The present results not only increase the understanding on the effective form and molecular mechanisms of PF-mediated protection against ALD but also promote better application of PF as a supplement food and herbal medicine for the treatment of ALD.</p
    corecore